15 research outputs found

    Higher Loop Nonplanar Anomalous Dimensions from Symmetry

    Get PDF
    In this article we study the action of the one loop dilatation operator on operators with a classical dimension of order N. These operators belong to the su(2) sector and are constructed using two complex fields Y and Z. For these operators non-planar diagrams contribute already at the leading order in N and the planar and large N limits are distinct. The action of the one loop and the two loop dilatation operator reduces to a set of decoupled oscillators and factorizes into an action on the Z fields and an action on the Y fields. Direct computation has shown that the action on the Y fields is the same at one and two loops. In this article, using the su(2) symmetry algebra as well as structural features of field theory, we give compelling evidence that the factor in the dilatation operator that acts on the Ys is given by the one loop expression, at any loop order.Comment: 1+40 page

    What is the dual of a dipole?

    Full text link
    We study gravitational solutions that admit a dual CFT description and carry non zero dipole charge. We focus on the black ring solution in AdS_3 x S^3 and extract from it the one-point functions of all CFT operators dual to scalar excitations of the six-dimensional metric. In the case of small black rings, characterized by the level N, angular momentum J and dipole charge q_3, we show how the large N and J dependence of the one-point functions can be reproduced, under certain assumptions, directly from a suitable ensemble in the dual CFT. Finally we present a simple toy model that describes the thermodynamics of the small black ring for arbitrary values of the dipole charge.Comment: 34 page

    Black Hole Bound States in AdS(3) x S**2

    Get PDF
    We systematically construct the geometries dual to the 1+1 dimensional (0, 4) conformal field theories that arise in the low-energy description of wrapped M5-branes in S1 × CY3 compactifications of M-theory. This includes a large number of multicentered black hole bound states asymptotic to AdS3 × S2. In addition, we find many geometries that develop multiple, mutually decoupled AdS3 × S2 throats. We argue there is a useful one to one correspondence between the connected components of the space of solutions and particular limits of type IIA attractor flow trees. We point out that there is a thermodynamic instability of small supersymmetric BTZ black holes to localization on the S2, a supersymmetric and exactly solvable analog of the well known AdS-Schwarzschild localization instability, and identify this with the "Entropy Enigma" in four dimensions. We discuss the phase transition this suggests, and initiate the CFT interpretation of these results.Physic

    Black Holes as Effective Geometries

    Full text link
    Gravitational entropy arises in string theory via coarse graining over an underlying space of microstates. In this review we would like to address the question of how the classical black hole geometry itself arises as an effective or approximate description of a pure state, in a closed string theory, which semiclassical observers are unable to distinguish from the "naive" geometry. In cases with enough supersymmetry it has been possible to explicitly construct these microstates in spacetime, and understand how coarse-graining of non-singular, horizon-free objects can lead to an effective description as an extremal black hole. We discuss how these results arise for examples in Type II string theory on AdS_5 x S^5 and on AdS_3 x S^3 x T^4 that preserve 16 and 8 supercharges respectively. For such a picture of black holes as effective geometries to extend to cases with finite horizon area the scale of quantum effects in gravity would have to extend well beyond the vicinity of the singularities in the effective theory. By studying examples in M-theory on AdS_3 x S^2 x CY that preserve 4 supersymmetries we show how this can happen.Comment: Review based on lectures of JdB at CERN RTN Winter School and of VB at PIMS Summer School. 68 pages. Added reference

    A Universal Behavior of Half BPS Probes in the Superstar Ensemble

    Full text link
    In this paper we probe the typical states of the superstar ensemble of (hep-th/0508023) using half-BPS states of type-IIB string theory on AdS5×_5 \times S5^5. We find a very simple universal result that has the structure \log\, \lag\lag \y \; \y \rag\rag_\calo \approx \a\, h \, \log N, where hh is the conformal weight of the probe \y and \a is a constant that depends mainly of the shape of the probe \y. A complete understanding of some properties of this leading term from the dual effective superstar geometry point of view is still lacking.Comment: 34 pages + appendice

    A bound on the entropy of supergravity?

    Get PDF
    We determine, in two independent ways, the number of BPS quantum states arising from supergravity degrees of freedom in a system with fixed total D4D0 charge. First, we count states generated by quantizing the spacetime degrees of freedom of 'entropyless' multicentered solutions consisting of anti-D0-branes bound to a D6-anti-D6 pair. Second, we determine the number of free supergravity excitations of the corresponding AdS_3 geometry with the same total charge. We find that, although these two approaches yield a priori different sets of states, the leading degeneracies in a large charge expansion are equal to each other and that, furthermore, the number of such states is parametrically smaller than that arising from the D4D0 black hole's entropy. This strongly suggests that supergravity alone is not sufficient to capture all degrees of freedom of large supersymmetric black holes. Comparing the free supergravity calculation to that of the D6-anti-D6-D0 system we find that the bound on the free spectrum imposed by the stringy exclusion principle (a unitarity bound in the dual CFT) seems to be captured in the dynamics of the fully interacting but classcial supergravity equations of motion.Comment: 33 pages, 5 figure

    Quantizing N=2 Multicenter Solutions

    Full text link
    N=2 supergravity in four dimensions, or equivalently N=1 supergravity in five dimensions, has an interesting set of BPS solutions that each correspond to a number of charged centers. This set contains black holes, black rings and their bound states, as well as many smooth solutions. Moduli spaces of such solutions carry a natural symplectic form which we determine, and which allows us to study their quantization. By counting the resulting wavefunctions we come to an independent derivation of some of the wall-crossing formulae. Knowledge of the explicit form of these wavefunctions allows us to find quantum resolutions to some apparent classical paradoxes such as solutions with barely bound centers and those with an infinitely deep throat. We show that quantum effects seem to cap off the throat at a finite depth and we give an estimate for the corresponding mass gap in the dual CFT. This is an interesting example of a system where quantum effects cannot be neglected at macroscopic scales even though the curvature is everywhere small.Comment: 49 pages + appendice
    corecore